a2 United States Patent

Walters et al.

US009460292B2

US 9,460,292 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(30)

Mar. 23, 2012

(1)

(52)

(58)

DYNAMIC RENDERING OF A DOCUMENT
OBJECT MODEL

Applicant: Intermedia.net, Inc., Mountain View
(CA)

Inventors: Richard John Walters, Wallingford

(GB); Joel Augustus Laird, North

Somerset (GB); Simon David Knott,

Bristol (GB)

Intermedia.net, Inc., Mountain View,
CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 13/774,752

Filed: Feb. 22, 2013

Prior Publication Data

US 2013/0254855 Al Sep. 26, 2013

Foreign Application Priority Data

(G N 1205117.3
Int. CI.

GOGF 21/60
GOGF 21/31
GOGF 21/62
U.S. CL

CPC

(2013.01)
(2013.01)
(2013.01)
............... GO6F 21/60 (2013.01); GO6F 21/31
(2013.01); GOGF 21/6218 (2013.01); GO6F
2221/2111 (2013.01)
Field of Classification Search
USPC 726/5, 26
See application file for complete search history.

300~ -

(56) References Cited
U.S. PATENT DOCUMENTS
6,338,064 Bl 1/2002 Ault et al.
8,341,529 B1* 12/2012 Lietal. ...ccoeevvennnne 715/741
8,667,480 B1* 3/2014 Sigurdsson et al. 717/171
2003/0037253 Al 2/2003 Blank et al.
2004/0187029 Al 9/2004 Ting
2007/0192485 Al 8/2007 McMahan et al.
2008/0208868 Al 8/2008 Hubbard
2008/0301766 Al 12/2008 Makino et al.
2009/0165109 Al 6/2009 Hird
2010/0287134 Al* 112010 Hausercccocevvveeene. 706/54
FOREIGN PATENT DOCUMENTS
WO 2010/102933 9/2010

OTHER PUBLICATIONS

Zhou et al., “Protecting Private Web Content from Embedded
Scripts,” Computer Security A ESORICS 2011, Springer Berlin
Heidelberg, pp. 60-79 (Sep. 12, 2011).

(Continued)

Primary Examiner — Michael R Vaughan

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

The present application relates to a computer having a
processor configured to execute a set of instructions to
render a customised version of a restricted document object
model. A restricted element in a document object model is
identified and at least one rule associated with the restricted
element is accessed. The at least one rule is applied to the
restricted element to generate a modified document object
model which is then rendered. A related computer-imple-
mented method is also covered by the present application.
The present application relates to server-side authentication
techniques; content filtering based on user-specific and
context-based requirements; and audit trail techniques.

13 Claims, 16 Drawing Sheets

s

N
" Tab Monitor

310 _~Timer Event Start

Display SaaSID)|
login page

20
Create jquer
objscjtqlorry
document
330

[Setup]

Get DOM load

1 restrictions to

=4

Loop
for each restriction

340

Calculate
resirictions to

apply
[Test]

DOM element
present

[Body]

1 Apply
restriction

333

apply on next
timer run

Schedule time
to run again

350\ Timer tsmminates

US 9,460,292 B2
Page 2

(56) References Cited Extended European Search Report for European Application No.
13001468.1 (Sep. 30, 2013).
Search Report for UK Application No. GB1305185.9 (Oct. 9, 2013).

OTHER PUBLICATIONS I[PO—UK/GB—Combined Search and Examination Report for GB
Application Serial No. GB1420725.2, dated Dec. 22, 2014, 5 pgs.,
Stamm et al., “Reining in the Web with Content Security Policy,” (Dec. 22, 2014).

Proceedings of the 19th International Conference on World Wide
Web, WWW *10, p. 921 (Apr. 30, 2010). * cited by examiner

US 9,460,292 B2

Sheet 1 of 16

Oct. 4, 2016

U.S. Patent

| "Old

TOSAN |«

€l

12

8p09 Wojsn)

61
1MOUEWS

ALl e
ajeussqiH
Sl
Buldg

Jabeueyy ddy pnoj9

1eOWO0|

WAP

laAJeg -6

1duoS eAep

uolsuaxg

1esmoig <y

uaiy ¢

1

g

U.S. Patent

US 9,460,292 B2

Oct. 4, 2016 Sheet 2 of 16
7~
SaaSID Browser Extension
Javascript Modules Static Resources
Listener Controller Map Images
27~ 29~ 31
Life Cycle | | Encryption| [Tab Monitor Style
Sheets
33~ 35- 37
Context 41
Screenshot| | Checking r
Component Restriction
39 437 % Map
47~y

Geo-Location

Service

FIG. 2

US 9,460,292 B2

U.S. Patent Oct. 4, 2016 Sheet 3 of 16
100\
3~ N 29~ 37~
Browser Listener Controller Tab Monitor
. , 120~
Navigate to Link Tab content 130~
,| change ,| Handle
event event
10 detected
NoéYes
Create and
store tab
monitor
150~
14/0 ' Q‘ ,| Obtain page
restrictions

160~

Build
categorized

page

restrictions

Start DOM
load
restriction
timer

End

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 16 US 9,460,292 B2

200‘\
3~ 27\ 29\ 37\
Br6wser Listener Controller Tab Monitor
Navigate | 220~ T L f40
to Link Page show D%rm'?gag
>| event ”| restriction
detected timer
210 Handle event
4
230
Apply login
button
handlers
250“\ Apply upage
loaded"
restrictions

v Log user
into

application

270 N

End) 2 250

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet 5 of 16 US 9,460,292 B2

300~

)]

Tab Monitor N\
10 /Timer Event Start

I Usder
ogged in to
Saa’;SID

360~ v
Display SaaSID
login page 320~

Create jquery
object for
document

Yes

330~ v
Loop
for each restriction

[Setup] 340~

Calculate
331\ ?g;tﬁgynlé)?g .| restrictions to

“| apply on next
apply timer run
[Test]

333~ DOM element
present

[Body]

3351 Apply
restriction X

Y

N
370 \?‘

Schedule time
to run again

of restrictions

350~_Timer terminates

FIG. 5

US 9,460,292 B2

U.S. Patent Oct. 4, 2016 Sheet 6 of 16
400~
U B SaaSID
ser rowser N3 Plug-in N7
| I 2:Notification that the |
I 1:NavigatetoPage | Root DOM Element |

R

|

410

has been Created

3: Fetch Page
Restrictions

Q

'

420

Q

:|\430

Loop

[While Page has
Not Fully Loaded]

FIG. 6

Loop - 4: Apply Restriction "
< <
i N
450
6: Notification that the T
Page has Loaded | 7- Fetcn Browser
> Restrictions
A %0 | P NP
Loop ~1 8: Disable Browser [~
Functionality
[For Each \-480
Browser | | 9: Success
Restriction] 485
Loop ©1770: Enable Browser |
 Functionality
[BFor Each < <290
rowser :
Restriction not | r---- 11: Success ___
Applicable] 495

U.S. Patent

500~

CAM

Extension |7

Oct. 4, 2016

Sheet 7 of 16

Geo-Location

Service

US 9,460,292 B2

™45

1: Retrieve User
1 2: Detect Spoofed

Location

N\

510

4: Geo-Location
Information

' o

3:

CAM
Sewer

IP Address

:l\szo

Retrieve

Location Based

on IP Address

:l\sso

[

e - —————————— — =

13: Reconfigure
Extension

590

U S

5: Retrieve User

Configuration

12: Current User
Configuration

FIG.7

6:

Retrieve User's
Security Groups

T1:

P56

8:

. Ns63

9:

. N565

10: Retrieve Configuration

560

Retrieve Configuration
Based on IP Address

Retrieve Configuration
Based on Geo-Location

Retrieve Configuration
Based on Server Clock

Based on Device Type

567

11: Combine

Configurations
570

U.S. Patent Oct. 4, 2016 Sheet 8 of 16 US 9,460,292 B2

600~
3~ 7~ 11~
CAM CAM
User Broszer Extension| [Server

1: Navigate | 62\0 2: Notify | i

6 1/0 « 3. Check Page o
590 \4: Notify » 5: Notifty | 6: Retrieve

w0 N\ /Serve}r ’ Credentials
640 650 670-

— PNg60
/ 49
7: Start Session
671, Browser

\ 8: Navigate

/

/

(2]
[]
o

9: Page Loaded]_

i 1:
: 673-17110: Inject Credentials; Cookies

\

675-H{{2 Destnation URL| [+~

679-1713: Retrieve Cookies 677

| 14: Cookies _ —\\%;681
15: Destroy Session ™-683

17. Store Cookies | |,16: Data | X

A

689 1_8_ _S_u_cf:?§s_ —» 687 685

_ | \49: Navigate i
go. Logged In J‘ Y 7 :

691 693

— T

695

FIG. 8

U.S. Patent Oct. 4, 2016 Sheet 9 of 16
700~
3~ 7~
CAM
Us:er Bm\fvser Extepsion
i 1:Load Page

710

715
5: User Event N

2: Inject Extension

Resources
into Page

:|\711

3: Register Event

P Listeners

720

<

713

6: Event Notiﬁcation>

--—

721

7: Query DOM Data

723
8: DOM Data

FIG. 9

9: Create Audit Message

:|\730

US 9,460,292 B2

1M1~
CAM
Server

N

740

10: Send Audit Messaqe:

11: Acknowledgment H

U.S. Patent Oct. 4, 2016 Sheet 10 of 16 US 9,460,292 B2

800\4
3~ 7~ 1M1~
CAM CAM
User Browser Extension Server

| 1:Navigate | I I
7 > 2: Notify Extension /7 820 ;
H 810 3: Detect Login Fields i
| - zz- 4:Result ___,f|5: Muttiple Credentials!
l | 830 / Detected |
| M0 g5 :
! i 6: Retrieve Usemames
5 | B60(1, 7:Usemames ||

| | 8: Decrypt UsernamesT870
| | < 880 |
i: 10: Display . <Q: Display Usernames i
ot 890 i
1: LS)onﬁrm T i
sername i |
/ 12. UU? Chosen , 13: Retrieve Password:

0 %0 930 14: Encrypled Passwor
15: Decrypt Password ™ 940
950
| 16: Credentials Data |
17: Inject Credentials [y 960

18: Login to Applicati
19: User Logged boin fo Application

into Application 980

N g70

FIG. 10

U.S. Patent Oct. 4, 2016 Sheet 11 of 16 US 9,460,292 B2
1000~
3
User Browser
: 4: Extension Started Jl
: +_on Opening Browser] CAM
! Extension
| 10101 2: Extension Registers
| Web Event Listeners
]
: 1020 ‘\
E 3: User Requests ~ 5. Compare
N , p
| Application Pagg . 4: Application Page ! égpt%asttlc\)nr/lith
Request Notification 1 Usgr-Specific
1030 White-/Black-List
1040 1050
__b: Block Request _ _
4 .
1060 !
7. Display Page !
8 User Receives | l«Blocked Notification |
Page Blocked /
_ _thijig/ati_og] 1070
| |
- 1080 ' '

FIG. 11

U.S. Patent Oct. 4, 2016 Sheet 12 of 16 US 9,460,292 B2

1100~
3
User Browser Application
4: Extension Started T
' on Opening Browser| CAM

| Extension
1110-1"] 2: Extension Registers |

:
[}
}
[}
1
[}
}
1
Web Event Listeners i
}
1120 |
3: User Requests |
}
:
1
}
.

Downloadable T .

Resource :

P

4: Application Resource Request

A 4

1130 / |
1140 5: Resource Response H
"""""" A
1150 | |
+ 7. Inspect !
6: Application Resource , HTTP |
Request Notification ' Response |
g Headers !
1160 1170 !
8: Compare !
Resource
Request with,
User-Specific!
White
1180

9: Block Resource
Download

119017 10: Display Resource

. i Download
: Uﬁg&?gg Ves . Blocked Notification

Download
Blocked 1200
Notification

i .
FIG. 12

US 9,460,292 B2

Sheet 13 of 16

Oct. 4, 2016

U.S. Patent

€l '9OId

—
(ebeI0)S BINDBS
:s8j007 914
(z3xaLejes’) uoisualx3

ec| liejeg:apeoe

SNdY uoisuajx3)
§90In0Say uoneol|ddy
asuodsoy {_l\\\\,
dllH
[
Qf uoisusyxg 191" 1019 TNLH asuodsay d1 1H
€L (maIp GoM IN
H m m B
punoibaio4)abed qapm oBuey) &Smﬁmmw 169 Y
i abed asojnuadq | | @14 ‘punoibaio] pue | | [UOHEJOAU] Sr uolsusixg
|1 Joysussiog axey ‘B'a | | punoibyoeg usamiag St | —]
S uoisuspg 991 | 4elpueH swwo) SO | | sebesssiy ssed bre g (maip qom
e/ I9jpuey IN punoJbyoeg)abed
(MaIA oM 66 v d SWIWO?) uoisuaxg |[EQOJS) UOISUB)XT
IN punoibaio) abed
pnojy umo AN/uIBoT G Js|puey swwo) ddy qom
— ~ sanba
J U33I9§ 391A3(N 10000100l dLLH] ddlIH
PM Hmmhww_m uolnje|nwg uoIsuajxgy
mm asuodsey dl IH 1sanbay d1IH
19 "-0g

US 9,460,292 B2

Sheet 14 of 16

Oct. 4, 2016

U.S. Patent

¥l "OId

(snouciyouAs)

‘eje(] :abessay

|

A

A

A

Y

sabessajy J0} JIepA

A

é

SYoeqlED N S R
v_oo_m:wnoo (ep=mmmes [~eeq [301n0 ﬁ_m.w_maao nog]
: :90.n08 ! 180l
SUOI)BIOAU| :90In0S ‘ejeq :89In0g)] S Bed S 1
A-an199fa0 | [. j0eq|[eD Q| ©oeds sweN
S yoeq|ien :q| ededs swen :eleq ‘eje(:abessaly
IV ‘obessayy snouoIyauAsy puag SNOUOJLOUASY puag
......... [~eeq | I Treeq
:80In0S Ble(] :82In0g)] :80In0S ‘Eje(] :92n0g]
apog 5 | #oeds sweN ”mﬁmn_ g 2 e oomam aleN
:0Besso|\ SNOUOIYOUAS pus ‘Ele(] :9Dessa
uoisua)xg N \; S pues .man___w_%m owmwwwﬁm SNoUoJYouAg pussg
9-0A93[00 [N\-g; 69 L _~13-3AI33IqOAAL r I

3\
J
3\
J
\

1senbay
duHINX

(snouoiyouhsy)
> jsenbay

dnHTINX

UONBOOAU|
> Jduosener
Joali{

(snouoiyouAsy)
> jsanbay

dpHINX

(snouoiyouAsg)
1senbsy

dpHTAX
apo)
uoisus)xg
yduoseaep

US 9,460,292 B2

Sheet 15 of 16

Oct. 4, 2016

U.S. Patent

® taosag
| 9suodsay

|
.@ I 180d dpH

dllH
06€1

08¢l

N

(g ereq)xoeqed

Sl "Old

‘ejeq ,8sljeniu|, :ebessapy

a (D ejeq@)pusg

«

soBessay Jojjem |

@

| (g1 wes4 “vejeq ‘pioer gl
Veleq)piqeL pue swel4 18S

L

[

“ AV_MM%\@MMW___NMQ Bunnoy abessapy apeoed |4y yduoseAer

I ! :

1| ‘snouciyouAsy) 9-9A98lq0Aduoseer UOISUS)X3 Liejes Jdudsenep co_wcm@mm_

' ssanboy duHTNX Ny 1L e
7

“ 6. (Lprpunosbalo-abedgampisees wos-asedg aweN ‘punosbaso) jdiiaseaer !
\ j“ \ 'k PSURpUT YOEGIEd ﬁ_'w “

[150d d11H (g eyeq)puss L pIrbunoibaio (v eyeq ‘osijenu,) [

_ -abedqap pisees wo) abessa|\ yojedsiq |

[:(| 99edg sweN \elep eleq g _

! Sifenul, !

| abessapy snouoJyouAsy puss |

“ M“ﬁﬁmu\m%%%;ﬁw Bunnoy abessapy apeoe |dy lduoseaer :

: : |

“ ‘SnouoJydUASYy) n-aA38lqoaduoseaer uoIsuajx3j Uejes [duosener co_mcmfwm_ | [

1| 1senbay dpHINX < </ €L "

“ 6L~ (punoubyoeg-abedqapy pisees wod-asedg awep ‘punoibyoeg) yduoseaep .“

US 9,460,292 B2

Sheet 16 of 16

Oct. 4, 2016

U.S. Patent

(penupuo))
Gl 'Old

o VA N VARG O,

\ Bleq :ejleq ,osifeniu), :abessayy | (@ €ed ‘eyeq asuodsey asuodsay
1]42° 00v1
[¥ ¢ fed L /
| pIpunoJBalo4-abedgapm I I
‘pIsees wod'aoeds sweN bupeot el @
Jjos :sobessay 104 Jiep
09¢l 06El
’ / [/ |
iU %0Eq||IeD Buipeo el

LpI'Bunoibaio4 abedgap pisees
‘W09 | 90eds swep yelep ejeq

OSIeniu],
abessaj snouciyouAsy puas

(0-aA108iq0) 10203014 THNSN OM SWeld
Bunnoy ebessajy J081d1ayu] dpy uonepuno4 SQ!
9-analqoduosener - ~
Y /S I8
2-aA1399[q0 X-00€})

US 9,460,292 B2

1
DYNAMIC RENDERING OF A DOCUMENT
OBJECT MODEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to UK patent application
GB 1205117.3filed Mar. 23, 2012. This application is hereby
incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present invention relates to a computer configured to
perform dynamic rendering of a document object model.
Aspects of the invention relate to a computer, a machine-
readable storage medium and a related method.

BACKGROUND OF THE INVENTION

It is increasingly common to utilise cloud computing
techniques to provide software applications. These applica-
tions are accessed over the internet and often circumvent
standard corporate security protocols and do not offer an
audit capability. Accordingly, there is an increasing need to
monitor access to web pages and to control the information
available to users.

It is against this background that the present invention has
been conceived. Embodiments of the invention may provide
a computer, a machine-readable storage medium and a
related method which overcome or improve one or more of
the shortcomings of known systems. Other aims and advan-
tages of the invention will become apparent from the fol-
lowing description, claims and drawings.

SUMMARY OF THE INVENTION

Aspects of the present invention relates to a computer, a
machine-readable storage medium and a method.

According to a first aspect of the present invention, there
is provided a computer comprising:

a processor configured to execute instructions;

instructions that, when executed by the processor, direct
the computer to perform operations to render a customised
version of a restricted document object model, the Opera-
tions comprising:

(a) identifying a restricted element in a document object

model,;

(b) accessing at least one rule associated with the

restricted element;

(c) applying said at least one rule to the identified element

to generate a modified document object model; and

(d) rendering said modified document object model.

The computer can identify one or more restricted ele-
ments in a document object model and apply said at least one
rule to modify the document object model. The modified
document object model can then be rendered on the com-
puter. The appearance of the document object model can be
modified, for example to hide or obfuscate information
contained in the element. The structure of the document
object model can be modified, for example to remove an
embedded link. The appearance of the rendered document
object model can remain unchanged when the functionality
is altered.

The document object model can comprise a plurality of
elements. One or more of said elements in the document
object Model can be classified as being restricted. The step
of applying one or more of said rules can comprise modi-

10

15

20

25

30

35

40

45

50

55

60

65

2

fying at least one of said restricted elements. Some or all of
the elements within the document object model can be
modified.

The document object model can be a part of a web page.
One or more of the document object models making up a
web page can be classified as being restricted. The rendered
version of the web page can comprise at least one modified
document object model and optionally at least one unmodi-
fied document object model.

Alternatively, the document object model can define a
complete web page. The document object model can be
identified as being restricted if the web page is restricted.

A check can be performed to determine when a new
document object model has been accessed.

The restricted element(s) can be defined with reference to
a restricted web page. The step of identifying a restricted
document object model can comprise looking up an identi-
fier, such as a uniform resource locator (URL), in a custom
table defined for that user. Upon receipt of a navigation
request, the URL of the requested document object model
can be compared to a look-up table. The look-up table can
be defined for a particular user or group of users. Equally,
the look-up table can be defined for a particular geo-location
(determined from an active ip address); class of rendering
device (for example, telephone, computer etc.); timings (for
example, time of day), etc.

The operations can include the step of determining
whether one or more of said rules is applicable. This step can
be repeated for each restricted element within the document
object model. The steps of applying one or more applicable
rules and rendering the first modified element of the docu-
ment object model can be repeated for each element of the
document object model to which one or more of said rules
is determined as being applicable. If one or more of said
rules is not applicable to an element within the document
object model, the operations can comprise rendering the
document object model in an unmodified form.

The operations can further comprise identifying the user.
The at least one rule and/or website restrictions can be
customised for each user or group of users. The operations
can comprise identifying the user, for example based on
log-in details. The operations can include the step of looking
up access rights for the identified user.

Alternatively, or in addition, the operations can comprise
identifying contextual data and applying at least one rule
and/or website restriction based on said contextual data. The
contextual data can include one or more of the following: (i)
the geographical location of a remote terminal used to access
the application over said network; (ii) the type of device
used to access the application over the network; (iii) the type
of connection used to access the application over the net-
work; and (iv) temporal restrictions, for example based on
the time of day and/or date and/or the day of the week.

The at least one rule can be fetched from a database. The
database can be stored on said computer or on a remote
server.

The steps of applying the rules and modifying said
document object model can be performed as said first
document object model is loading, rather than after it has
loaded. The modified document object model can be ren-
dered without previously having rendered the (unmodified)
document object model. Thus, the source document object
model is not rendered. This approach can help to avoid
flickering which may otherwise occur when an element is
displayed and then removed. A plurality of document object
models can be modified and the modified document object
models rendered simultaneously.

US 9,460,292 B2

3

The at least one rule can provide one or more of the
following functions upon the restricted element: (i) hide said
element from view; (ii) remove a portion or all of said
element from the document object model; (iii) disable
functionality associated with said element; (iv) obfuscate the
contents of said element; (v) unwrap a link embedded within
said element; and (vi) register a screenshot of said document
object model in its rendered form. The functions could
equally change font colour, or reverse the contents of the
text. The at least one rule could be applied to a complete
document object model.

The operations can further comprise operating a browser
through which the restricted web site is accessed. The at
least one rule can disable at least one of the following
functions of said browser: (i) printing functionality; (ii) save
functionality; (iii) viewing of the web page source; and (iv)
copy functions. Any function of the browser which has not
been disabled by said at least one rule can be positively
enabled. This helps to avoid the potential scenario whereby
browser functionality is erroneously inhibited, for example
when a user selects different tabs in the browser.

The operations can further comprise determining whether
said at least one rule has been applied to said restricted
element and issuing a notification.

In a further aspect of the present invention there is
provided a machine-readable storage medium having
machine-executable instructions encoded thereon that upon
execution by a processor direct a computer to perform
operations comprising:

(a) identifying a restricted element in a document object

model,;

(b) accessing at least one rule associated with the
restricted element;

(c) applying said at least one rule to said restricted
element to generate a modified document object model;
and

(d) rendering said modified document object model.

The operations can further comprise the step of determin-
ing which of said at least one rule is applicable to said
document object model. The steps of applying the at least
one rule and rendering said modified element can be
repeated for a plurality of document object models.

The application of one or more applicable rules can be
performed as said document object model is loading. This
technique can avoid flickering resulting from rendering the
original (unmodified) document object model and then
replacing it with a modified document object model. A
plurality of modified document object models can be gen-
erated for rendering simultaneously. The modified document
object models can, for example, be stored in a memory ready
for rendering.

The at least one rule can provide one or more of the
following functions upon the restricted element: (i) hide said
element from view; (ii) remove a portion or all of said
element from the document object model; (iii) disable
functionality associated with said element; (iv) obfuscate the
contents of said element; (v) unwrap a link embedded within
said element; and (vi) register a screenshot of said document
object model in its rendered form.

The operations can further comprise operating a browser
through which the restricted web site is accessed. The at
least one rule can disable at least one of the following
functions of said browser: (i) printing functionality; (ii) save
functionality; (iii) viewing of the web page source; and (iv)
copy functions. Any function of the browser which has not
been disabled by said at least one rule can be positively

10

15

20

25

30

40

45

50

55

60

65

4

enabled. This helps to avoid the potential scenario whereby
functionality is inhibited, for example when user selects
different tabs.

In a still further aspect of the present invention there is
provided a method of rendering a customised version of a
restricted document object model, the method comprising:

(a) identifying a restricted element in a document object
model,;

(b) accessing a set of rules associated with the restricted
element;

(c) applying one or more applicable rules to said restricted
element to generate a modified document object model;
and

(d) rendering said modified document object model.

The method can further comprise the step of determining
which of said rules is applicable. The method can comprise
repeating steps (c) and (d) for a plurality of document object
models.

The document object model can form a part of a web
page, or a complete web page.

According to a still further aspect of the present invention
there is provided a server comprising:

a processor configured to execute instructions;

instructions that, when executed by the processor, direct
the server to perform operations to authenticate a user to an
application, the operations comprising:

(a) storing user login information on the server;

(b) identifying navigation on a remote terminal to an

application requiring user authentication;

(c) introducing said user login information stored on the
server into the application at said remote terminal.

The user authentication can thereby be performed by the
server, without the user having to input the login information
at the remote terminal. Rather, the server detects when the
user has navigated to an application requiring user authen-
tication and then injects the stored login information into the
application.

The application can be accessed over a network, such as
the internet. In this arrangement, the application can be
accessed from the remote terminal through a web browser.
The application can, for example, be operated by a remote
server accessed from the remote terminal.

An extension can be provided on the remote terminal to
listen for the user navigating to the application. When the
extension determines that the user has navigated to the
application, a request can be transmitted to the server. The
server can be configured to introduce the login information
into the application in response to the request from the
extension. The server can be configured to introduce the
login information into a first browser session, for example a
headless browser session. The extension can receive a set of
login data from the first browser session upon completion of
the login procedure and the login data can then be trans-
mitted to the server. The server can be configured to receive
the login data derived from the first browser session. The
first browser session can be closed and any login data
deleted once the login data has been output to the server. The
server can be configured to introduce the login data received
from the first browser session into a second browser session
operating on the remote terminal.

The server can store one or more sets of user login
information for said application. The sets of user login
information can correspond to different login profiles for the
application. The login profiles can be configured to provide
different rights for the user within the application, for
example to enable administrator and user functions. The
server can be configured to receive a prompt from the remote

US 9,460,292 B2

5

terminal indicating which login information is to be intro-
duced into the application. The server can respond by
outputting the requested set of user login information to the
application.

According to a further aspect of the present invention
there is provided a computer comprising:

a processor configured to execute instructions;

instructions that, when executed by the processor, direct
the computer to perform operations to authenticate a user to
an application accessed over a network, the operations
comprising:

(a) identifying a request for user login information to the

application;

(b) outputting a notification of the request to a remote
server;

(c) initiating a first browser session configured to receive
user login information from the remote server in
response to said notification;

(d) obtaining login data from the first browser session
upon completion of the user login; and

(e) introducing the login data from the first browser
session into a second browser session.

The application can be accessed over the internet, for
example through a browser operating on the computer. An
extension can operate on the browser to identify the request
for user login information and to output the notification to
the remote server. The remote server can also be accessed
over the internet, for example in the background of a web
page.

The first browser session can be a headless session (i.e. a
browser without a user interface). The computer can be
configured to output the login data from the first browser
session to the remote server. The computer can be config-
ured to close the first browser session and optionally to
delete the login data from local memory once it has been
output to the remote server. The computer can be configured
automatically to open the second browser session. The
second browser session can be configured to receive the
login data directly from the remote server.

Upon identification of the request for user login informa-
tion, the computer can be configured to output a prompt to
a user to select one of a plurality of sets of user login
information for said application. The notification output to
the remote server can include an identifier of the selected set
of the selected user login information.

According to a yet further aspect of the present invention
there is provided a computer-implemented method of per-
forming user authentication to an application accessed over
a network via a browser, the method comprising:

(a) identifying a request for user login information to the

application;

(b) outputting a notification of the request to a remote
server;

(c) initiating a first browser session and introducing the
user login information from the remote server into said
first browser session;

(d) obtaining login data from the first browser session
upon completion of the user login; and

(e) introducing the login data from the first browser
session into a second browser session.

The login data from the first browser session can be output
to the remote server. The remote server can then introduce
the login data from the first browser session directly into the
second browser session.

10

15

20

25

30

35

40

45

50

55

60

65

6

According to a yet further aspect of the present invention,
there is provided a computer comprising:

a processor configured to execute instructions;

instructions that, when executed by the processor, direct
the computer to perform operations to generate an audit trail
of user actions, the operations comprising:

(a) identifying a document object model event within a

browser;

(b) storing audit data relating to the identified document

object model event; and

(c) transmitting the audit data to a server for storage in an

audit trail.

The browser provides access to the internet, for example
to provide access to an application operating on a remote
server. The document object model event can, for example,
comprise a user-triggered event, such as selecting an icon or
a button within the document object model; and/or a
browser-triggered event, such as loading or modification of
the document object model.

The audit data can be captured from one or more pre-
defined document object models, for example to capture a
duplicate of part or all of the document object model.
Alternatively, the audit data can be captured from one or
more configurable document object models, for example a
filename or an email address input by a user into the
configurable document object model.

According to a yet further aspect of the present invention
there is provided a computer-implemented method of gen-
erating an audit trail of user actions, the operations com-
prising:

(a) identifying a document object model event within a

browser;

(b) storing audit data relating to the identified document

object model event; and

(c) transmitting the audit data to a server for storage in an

audit trail.

According to a yet further aspect of the present invention
there is provided a computer comprising:

a processor configured to execute instructions;

instructions that, when executed by the processor, direct
the computer to perform operations to inhibit one or more
features or functions of an application accessed over a
network, the operations comprising:

(a) identifying user-specific and/or context-based restric-

tion data relating to the application;

(b) providing a user with access to the application over a

network; and

(c) inhibiting some of the features or functionality of the

application based on the restriction data associated with
that user.

The instructions can inhibit downloading functionality,
for example to prevent data being downloaded from the
application. The instructions can hide or obfuscate part or all
of the information displayed by said application, for
example using the techniques described herein to modify the
rendering of a document object model. The user-specific
restriction data can be pre-defined, for example by a system
administrator.

The context-based restriction data relates to one or more
of the following:

(1) the geographical location of a remote terminal used to
access the application over said network;

(i1) the type of device used to access the application over
the network;

(iii) the type of connection used to access the application
over the network; and

US 9,460,292 B2

7

(iv) temporal restrictions, for example based on the time
of day and/or date and/or the day of the week.

According to a yet further aspect of the present invention
there is provided a computer-implemented method of inhib-
iting one or more features or functions of an application
accessed over a network, the method comprising:

(a) identifying user-specific and/or context-based restric-

tion data relating to the application;

(b) providing a user with access to the application over a

network; and

(c) inhibiting some of the features or functionality of the

application based on the restriction data associated with
that user.

According to a still further aspect of the present invention
there is provided a computer comprising:

a processor configured to execute instructions;

instructions that, when executed by the processor, direct
the computer to perform operations to control communica-
tion between a global namespace and an anonymous
namespace within a browser extension; the operations com-
prising:

(a) sending a first message from the anonymous
namespace to a message routing module, the first message
opening a communication channel between the anonymous
namespace and the message routing module;

(b) sending a second message from the global namespace
to the message routing module; and

(c) sending a third message from the message routing
module to the anonymous namespace through said open
communication channel.

According to a yet further aspect of the present invention
there is provided a computer-implemented method of con-
trolling communication between a global namespace and an
anonymous namespace within a browser extension; the
method comprising:

(a) sending a first message from the anonymous
namespace to a message routing module, the first message
opening a communication channel between the anonymous
namespace and the message routing module;

(b) sending a second message from the global namespace
to the message routing module; and

(c) sending a third message from the message routing
module to the anonymous namespace through said open
communication channel.

The global namespace can be provided in a background
module of the browser extension. The anonymous
namespace can be provided in a foreground module of the
browser extension. The browser extension can be pro-
grammed in JavaScript. The message routing module can be
programmed in operative-c.

The first message can comprise one or more of the
following: a first unique message identifier; an anonymous
namespace identifier (for example an origin/source
namespace) for identifying where the first message has
originated; and listening data to enable the message routing
module to register a listener;

The second message can comprise one or more of the
following: a message name; message data; a second unique
message identifier; a global namespace identifier for iden-
tifying where the second message has originated; a flag to
indicate that no response is required; a destination
namespace identifier; and a time-stamp.

The first and second messages can be linked by a
namespace identifier. A destination namespace in the second
message can be matched to an origin/source namespace in
the first message.

10

15

20

25

30

35

40

45

50

55

60

65

8

The third message can comprise part or all of the second
message. In certain embodiments, the contents of the third
message can be identical to the second message. Thus, the
anonymous namespace can appear to receive the second
message directly from the global namespace. As a result, the
anonymous namespace can receive the second message as if
the message routing module does not exist. The message
routing module and the related technique have particular
application in iOS as there is no mechanism to pass a
message between the global and anonymous namespaces.

The message routing module can be configured to estab-
lish a connection between said first message and said second
message.

The communication channel can be closed after the third
message has been sent. The method can comprise re-sending
the first message to re-open the communication channel
from the anonymous namespace to the message routing
module.

The methods described herein can be computer-imple-
mented. The methods can be performed by a computer
comprising one or more electronic processors configured to
perform a set of instructions. The set of instructions can
implemented in hardware or software. The software can be
provided in a computer-readable medium or downloaded
over a network, such as the internet.

Many of the attendant features of the present invention
will be more readily appreciated and understood by refer-
ence to the following detailed description of a preferred
embodiment considered in connection with the accompany-
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the present invention will now be
described, by way of example only, with reference to the
accompanying figures, in which:

FIG. 1 shows an overview of the system architecture in
accordance with the present invention;

FIG. 2 shows an overview of the plug-in application
according to an embodiment of the present invention;

FIG. 3 shows a flow chart representing the process for
detecting changes on a web page;

FIG. 4 shows a flow chart representing the process for
detecting the loading of a new web page;

FIG. 5 shows a flow chart representing the process for
restricting the rendering of elements of a web page;

FIG. 6 shows a flow chart providing an overview of the
process for restricting browser functionality and for modi-
fying page content;

FIG. 7 shows a flow chart utilising geo-location service
data for implementing context-based rules;

FIG. 8 shows a flow chart for implementing server-side
authentication;

FIG. 9 shows a flow chart for generating an audit trail for
storage on a server;

FIG. 10 shows a flow chart illustrating the implementa-
tion of multiple credentials for a user;

FIG. 11 shows a flow chart for the implementation of
content filtering;

FIG. 12 shows a schematic representation of the imple-
mentation of browser extensions;

FIG. 13 shows a system schematic of an extension emu-
lator for iOS systems;

FIG. 14 shows a web application communication handler
for the extension emulator shown in FIG. 13; and

US 9,460,292 B2

9

FIG. 15 shows a sequence diagram illustrating commu-
nication between the background and foreground of the
extension according to an embodiment of the present inven-
tion.

DETAILED DESCRIPTION OF AN
EMBODIMENT

A system 1 for controlling the rendering of a restricted

5

web page will now be described with reference to the 10

accompanying figures. The system 1 is customised to pro-
vide controlled access for a particular user.

As shown in FIG. 1, the system 1 comprises a browser 3
operating on a client computer 5 for accessing web pages
over the internet. The web pages can be rendered in one or
more tabs opened by the user within the browser 3. The
browser 3 operates in conjunction with an extension 7 which
loads on the client computer 5 when the browser 3 is opened
by a user. As described in more detail herein, the extension
7 identifies restricted web pages and operates to modify the
appearance and/or functionality of the web page rendered on
the browser 3.

The extension 7 is configured to communicate with a
cloud application manager 9 operating on a remote server 11
via a remote communication protocol, such as TCP/IP or
HTTP. The cloud application manager 9 is connected to a
database 13 (for example an SQL database, such as MySQL
or NOSQL) containing user data, including login and
authorisation information. The cloud application manager 9
provides a user interface for one or more cloud applications
operating over the internet.

The cloud application manager 9 comprises a security and
persistence module 15, an abstraction module 17, an admin-
istrator module 19 and a custom module 21. The security and
persistence module 13 controls user-authentication and
transactions with the database 21. The abstraction module 17
is used for abstracting the persistence of data to allow code
to be written in a database agnostic fashion. The adminis-
trator module 19 provides an administration user interface;
and the custom module 21 provides access to a customised
server.

The extension 7 communicates with an encryption com-
ponent and a screenshot capture component operating on the
client computer 5. The encryption component performs
encryption and decryption of data transferred between the
extension 7 and the remote server 11. The data is encrypted
with the required encryption algorithm, and subsequently
decrypted with the relevant algorithm. The screenshot cap-
ture component captures screenshots in response to instruc-
tions receive from the extension 7 to provide a register of
usage.

As shown in FIG. 2, the extension 7 comprises a series of
JavaScript modules which define JavaScript objects. A lis-
tener module 27 contains the functions used for listening to
browser-specific API events and key-handling events. A
controller module 29 handles the login of the user and
directs events, passed by the listener object, to the correct set
of business logic. A map module 31 defines a map object
which implements a HashMap class. A lifeCycle module 33
holds all pertinent data about events involving the document
object model (DOM) lifecycle, including page loading
events and DOM modification events. An encryption mod-
ule contains all logic and code required for encrypting and
decrypting data. A tab monitor module 37 contains all
functionality for applying monitoring a Document Object
Model (DOM) for a tab within the browser 3 and for
applying page rules. A screenshot module 39 enables the

20

25

30

35

40

45

55

65

10

capture of dimension data, which represents the visible view
port of the current tab, along with the subsequent capture of
this visible data into screenshots.

As outlined above, the extension 7 initiates when the
browser 3 is opened and controls user access to selected
cloud applications via the remote server 11. The extension 7
requires a single user log-on and then provides automated
log-in to the selected cloud applications. The log-in details
(for example username and password) for each of the
selected cloud applications could be stored locally on the
client computer 5, but in the present embodiment they are
stored remotely on the remote server 11 for access by the
cloud application manager 9.

The extension 7 builds a user-specific restriction map 41
defining a set of rules which are mapped to restricted
domains and URLs (uniform resource locators). The restric-
tion map 41 is stored in local memory on the client computer
5 for access by the extension 7. The restriction map 41
contains the following data for each user:

User identification data, such as username and email

address.

Web page rules and rules indicating when the rules should
be applied during the page loading lifecycle.

Browser rules for controlling browser functionality, such
as copy, save and print, for restricted web applications.

A list of all sites which the user can log into, with a
uniquely generated reference for retrieving the login
credentials from the server.

The restriction map 41 defines at least one rule which can
be applied to a document object model (DOM), which can
define part or all of the web page. The rules provided within
the restriction map 41 can be applied when the DOM is
loading, after it has loaded and also when it changes. These
rules can be classified as follows:

DOM Load—All restrictions which should be applied

when the DOM is loading.

Page Load—All restrictions which should be applied
when the page has fully loaded, such as Screenshot
restrictions.

DOM Change/Element Trigger—All restrictions which
should be applied every time the DOM changes or
when configurable elements are triggered on the page.

The rules provided in the restriction map 41 in each of the
above classifications can be defined as follows:

hide—Used to hide DOM elements from the user, without
removing them from the document. For example, login
pages for Cloud Applications have their login fields
hidden so that the user cannot enter data, whilst allow-
ing the plug-in to still use them in the background. This
is achieved by setting the stylesheet “display” attribute
to “none”.

remove—Removes the DOM element from the document.

removeParent—Removes the parent DOM element from
the document, which will also remove any child DOM
elements. For example, on the Salesforce setup screen
for a user profile, to fully remove the link for changing
your password it is also necessary to remove the parent
bullet point DOM element.

disable—Disables functional DOM elements, such as
buttons, without removing them from the visible docu-
ment. This is achieved by setting the DOM “disable”
attribute to “true”.

blank—Used to obfuscate data on the screen, for example
by replacing the textual data with a number of Xs. For
example, obfuscating a column of numbers in a report
can be achieved with this restriction.

US 9,460,292 B2

11

unwrap—“Unwraps” an HTML link DOM element, by
removing the link whilst retaining the content within
the link. This can be used to disable links, without
disrupting the look-and-feel of the presented HTML
document.

screenshot—Registers a screenshot “click” event handler
on the targeted DOM element.

trigger—Registers a custom “click” event handler on the
targeted DOM element, which will trigger the applica-
tion of the “DOM Change/Flement Trigger” restric-
tions.

The restriction map 41 also contains rules which can be
applied to the browser 3 to inhibit browser functions, such
as:

Print—Disables printing functionality via one or more of the
following techniques:

i. Browser menus are hidden, by targeting the elements
within the Browser’s window document, in both menu-
set and vbox DOM elements.

ii. Browser pop-up menus are hidden, by targeting the
elements within the Browser’s window document in the
popupset DOM elements.

iii. Key triggers are disabled in the Browser’s window
document.

iv. A custom stylesheet targeting the “Print” media, which
hides the DOM body element

Save—Disables document and section saving functionality
one or more of the following techniques:

i. Menus are hidden, by targeting the elements within the
Browser’s window document, in both menuset and
vbox DOM elements.

ii. Pop-up menus are hidden, by targeting the elements
within the Browser’s window document in the popup-
set DOM elements.

iii. Key triggers are disabled in the Browser’s window
document.

View Source—Disables document and section view source
functionality via one or more of the following techniques:

i. Menus are hidden, by targeting the elements within the
Browser’s window document, in both menuset and
vbox DOM elements.

ii. Pop-up menus are hidden, by targeting the elements
within the Browser’s window document in the popup-
set DOM elements.

iii. Key triggers are disabled in the Browser’s window
document.

Copy—Disables the ability to copy content from the page
via one or more of the following techniques:

i. Menus are hidden, by targeting the elements within the
Browser’s window document, in both menuset and
vbox DOM elements.

ii. Pop-up menus are hidden, by targeting the elements
within the Browser’s window document in the popup-
set DOM elements.

iii. Key triggers are disabled in the Browser’s window
document.

iv. Copy key press combinations are captured and nulli-
fied.

v. Disables the selection of text within the DOM

The listener module 27 identifies the loading of a new web
page and also identifies when a change occurs to a loaded
web page to enable application of the appropriate rules
defined in the restriction map 41. When an event is triggered
in the browser 3, the listener module 27 is notified. The
listener module 27 comprises listeners for registering one or
more of the following events:

10

15

20

25

30

35

40

45

50

55

60

65

12

DOM Listeners—Listeners for events involving DOM

loading and content modification.

Page Listeners—Listeners for events involving page load-

ing and rendering.

Tab Listeners—Listeners for events involving tab switch-

ing and content modification.

Key Listeners—Listeners for keyboard events.

The operation of the extension 3 will now be described
with reference to FIGS. 3 to 6.

Page Change Detected

A first flowchart 100 illustrating the system steps imple-
mented when a page change is detected is shown in FIG. 3.
When a user navigates to a link in a tab of the browser 3
(Step 110), the listener module 27 is notified of a change in
the contents of the tab’s DOM (Step 120). The controller
module 29 receives the event (Step 130) and, if not already
available, creates a tab monitor signal to monitor the tab
(Step 140). The tab monitor module 37 accesses page rules
from the restriction map 41 (Step 150).

If the user is logged into the extension 7, the controller
module 29 applies the page rules accessed form the restric-
tion map 41 (including “DOM Load”, “Page Load” and
“DOM Change”) to the web page (Step 160). The tab
monitor module 37 initiates a restriction timer (Step 170)
and the page rules are applied periodically, for example with
intervals of 100 ms.

Page Load Detected

A second flowchart 200 illustrating the system steps
implemented when a page is fully loaded into the browser 3
is shown in FIG. 4. When a user navigates to a web page in
a tab of the browser 3 (Step 210), the listener module 27
detects that a page has loaded and a pageshow event is
triggered (Step 220). The controller module 29 transfers the
pageshow event (Step 230) to the tab monitor module 37
which terminates the restriction timer (240) applying the
“DOM Load” rules. The tab monitor module 37 then checks
if the user is logged into the extension 7.

If the user is logged in, the tab monitor module 37 applies
the pagel.oad rules (Step 250) accessed form the restriction
map 41. The tab monitor module 37 then checks to deter-
mine if the web page requires a login and, if so, automati-
cally inputs the user login details (Step 260). If the tab
monitor module 37 determines that the user is not logged
into the extension 7, it will attach an event handler to the
login button to allow the login event to be captured by the
extension 7 and handled accordingly. The process then ends
(Step 270).

If the user is not logged in, the tab monitor module 37
applies login handlers (Step 280) and the process then ends
(Step 270).

DOM Load Rules

As outlined above, the tab monitor module 37 can initiate
a restriction timer which is cycled every 100 ms to ensure
that the page is rendered to the user for the first time
incorporating one or more modified DOMs with the key
rules applied. A third flowchart 300 showing this function of
the tab monitor module 37 is shown in FIG. 5.

The restriction timer is initiated (Step 310), for example
in response to detecting a page change. The tab monitor
module 37 then checks if the user is logged into the
extension 7. If the user has logged into the extension 7, the
tab monitor module 37 creates a query object for the
document (Step 320) and applies the “DOM Load” rules
(Step 330) accessed from the restriction map 41.

More particularly, the application of the “DOM Load”
rules (Step 330) comprises fetching the “DOM Load” rules
to be applied (Sub-routine 331). The DOM element is then

US 9,460,292 B2

13

presented (Sub-routine 333) and a first rule applied (Sub-
routine 335). This process is repeated in a loop for each rule
to be applied to the element. Moreover, the process is
repeated for each element to be rendered.

On a first run, the “DOM Load” rules which are relevant
for the current page are all available. Once a restriction has
been successfully applied, it is removed from the available
list of “DOM Load” rules and will not be attempted again.
As the entire process is being run while the DOM is still
loading, it is possible for the element to not yet have been
loaded into the DOM. If this is the case, the element will be
restricted on a subsequent run of the restriction timer (Step
340). If the number of rules to apply on the current page is
zero, after removing already applied rules, the timer process
will be terminated (Step 350).

If the User has yet to log into the extension 7, the tab
monitor module 37 replaces the contents of the current tab
with a login page for the cloud application manager 9 (Step
360). The restriction timer can then be run again.

The restriction timer is then scheduled to be run again
(Step 370). This procedure will be repeated until the original
page has fully loaded in the background, to ensure the actual
page which was requested does not overwrite the contents of
the login page.

DOM Change Detected

When a “DOM Change” event notification is received, or
a custom trigger event is detected, all “DOM Change” rules
are applied to the current DOM by the tab monitor module
37 if the user is logged into the extension 7.

Web Page Restriction Sequence

The extension 7 can modify the appearance and/or func-
tionality of a web page rendered via the browser 3 which is
identified as being restricted for the user. The operation of
the extension 7 will now be described with reference to a
fourth flowchart 400 shown in FIG. 6.

The user navigates to a restricted page in the browser 3
(Step 410). The browser 3 notifies the extension 7 that a new
root DOM element has been inserted into the page, via the
relevant browser event listener (Step 420). The extension 7
fetches the page rules for the current URL, if any, from the
restriction map 41 (Step 430).

The following two steps are carried out for each page
restriction, until the extension 7 is notified that the web page
has fully loaded. The extension 7 attempts to apply each rule
contained in the restriction map 41 to the web page (Step
440). The rules are applied by finding DOM elements via a
selector, which identifies individual or group DOM elements
over which the rule will apply. The selector can retrieve
DOM elements via any of the valid DOM attributes, such as
its stylesheet class, element ID or DOM type. As outlined
above, the rules contained in the rule set include hide,
remove, removeParent, disable, blank, unwrap and screen-
shot. One or more of the rules can be applied. If the element
has been found by the selector, the extension 7 is notified
that the element is valid and that the restriction has been
applied (Step 450).

The procedure for applying each rule in the restriction
map 41 (consisting of Step 440 and Step 450) occurs in a
loop until the page has loaded, as the document can render
in sections over a period of time. By starting to apply the
rules as soon as the page starts to render, it can remove any
element of flickering, where restricted elements appear on
the page, for them to be subsequently removed by the
extension 7. Where the browser API allows it, this can be
further enhanced by hiding the rendering of the page until
the entire modified DOM is available, by applying a custom

20

25

30

40

45

50

14

stylesheet. Once the page is fully loaded, the browser 3
notifies the extension 7 via the “DOM Content Loaded”
event listener (Step 460).

The extension 7 then fetches all valid browser rules for the
current page (Step 470) from the restriction map 41. The
following two steps are carried out for each browser restric-
tion applicable. The browser functionality is disabled in
accordance with the browser rules (Step 480). The browser
rules include print, save, view source and copy, as outlined
above. The browser 3 notifies the extension 7 when an
element has been successfully disabled (Step 485).

To ensure browser functionality is available on web sites
where it has not been restricted, any browser functionality
that has not been disabled within this process is forcefully
enabled (Step 490). This is important when a user has
swapped tabs, from a restricted site to an unrestricted one.
The process for enabling browser functionality is the reverse
of the process for disabling browser functionality. The
browser 3 notifies the extension 7 when an element has been
successfully enabled (Step 495).

The extension 7 can thereby control the rendering and/or
functionality of a restricted web page. The rendering of the
web page can be controlled by the extension 7, for example
to inhibit the display of information on the web page and/or
one or more functions provided within the web page. In
parallel, the extension can control the browser 3 to inhibit
browser functionality, such as copy and print functions. The
extension 7 utilises a restriction map 41 which defines the
rules applicable to a particular web page (or DOM). The
restriction map 41 can be customised for each user or each
group of users, for example by a system administrator.
Equally, the list of web pages to be restricted can be
customised for a particular user or group of users.
Context-Based Rules

It will be appreciated that different rules can be applied to
a restricted web page based upon context information deter-
mined at the point of accessing the restricted web page. In
particular, the one or more rules described herein can be
applied based on context-specific information. For example,
determining whether one or more of said rules is applicable
can be based upon contextual information including: (i)
physical geographical location of the computer; (ii) time of
day; (iii) day of week; (iv) connection type; and (v) device
type. This contextual information can be applied in addition
to the contexts of user or group membership described
elsewhere.

The physical geographical location is determined by
querying an external IP geo-location service. The IP geo-
location service identifies the physical location of the client
computer 5. The time of day and day of week are determined
by the user’s locale and querying against an external web
service to ensure the user has not altered their local system
settings. The connection type is determined by comparing
the IP address of the client computer 5 with IP address range
information stored in a database defining those IP addresses
relating to one or more of the following: (i) the internal
network; (ii) remote access via [Psec VPN; and (iii) remote
access via SSL VPN. If the IP address of the computer is not
included within the ranges stored in the database then the
connection type is determined as external.

The extension 7 includes a context-checking component
43 which in the present embodiment is configured to com-
municate with an external Geo-location Service 45 to deter-
mine the location of the client computer 5. The location
information is supplied to the cloud application manager 9
with user-configuration data. The operation of the context-

US 9,460,292 B2

15
checking component 43 will now be described with refer-
ence to a fifth flowchart 500 shown in FIG. 7.

The context-checking component 43 submits a request to
retrieve its current location from the Geo-location Service
45 (STEP 510). The Geo-location service 45 is a dedicated
service implemented independently of the server 11 and
checks whether the user is using a spoofed, or manipulated,
1P address (STEP 520). The Geo-location service 45 can, for
example, be provided by a third-party. The IP address is
thereby validated and, based on the validated IP address, the
geo-location of the user is calculated (STEP 530). The
Geo-location information is serialised and returned to the
context-checking component 43 (STEP 540). A request for
the latest user configuration is sent to the server 11, sending
the geo-location information as part of the request (STEP
550).

The user’s security group membership is retrieved from
the server 11 and context policies are configured on a
per-security group basis (STEP 560). The user-specific
application restrictions are then calculated based on the
user’s current:

1. IP address (STEP 561)—either calculated for specific

IP addresses, or based upon configured subnet masks.
2. Geo-location (STEP 563)—calculated using the fol-
lowing geo-location data:
a. City
b. Region
c. Country
d. Latitude/longitude
3. Server clock (STEP 565)—calculated using the current
server clock, which is used as a time reference which
cannot be manipulated by the end user.

4. Device type (STEP 567)—calculated using the user

agent of the current connected device.

The user restrictions are then combined to specify the
current user configuration for the context-checking compo-
nent 43 (STEP 570). The configuration is serialised and
returned to the context-checking component 43 (STEP 580).
The context-checking component 43 is reconfigured and the
latest user configuration and restrictions applied to any
application tabs/windows that are already opened within the
user’s device (STEP 590). The application of restrictions is
carried out directly in the browser 7, against any web
application, rather than the usual server-side implementation
which affects a single web application.

The extension 7 is configured to implement the user
configuration and/or restrictions directly within the browser
3. The restrictions can be applied against any web applica-
tion operating in the browser 3. This approach differs from
the prior art arrangements in which restrictions are typically
implemented by the remote server 11 (i.e. server-side imple-
mentation) and affect a single web application.
Server-Side Authentication

The system 1 implements a method of authenticating a
user to a web site (or web application) from the cloud
application manager 9 operating on the remote server 11,
rather than from the browser 3 operating on the client
computer 5. In this method the remote server 11 authenti-
cates to the web site on behalf of the user and passes cookies
to the cookie store in the local browser 3. This technique,
referred to herein as server-side authentication, is imple-
mented by the extension 7 operating in conjunction with the
cloud application manager 9. To further enhance security,
the verification credentials are not sent to the client com-
puter 5 in the present embodiment.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

The operation of the server-side authentication will now
be described with reference to a sixth flowchart 600 shown
in FIG. 8.

A user navigates to a web-application which requires
authentication (STEP 610). The browser 3 notifies the exten-
sion 7 that the application page has loaded (STEP 620); and
the extension 7 inspects the page to determine whether login
fields are present on the current page (STEP 630). Any login
fields are detected for the specific URL (STEP 640). A
request is sent by the extension 7 to the cloud application
manager 9, requesting authentication to the application on
the user’s specific URL (STEP 650). The cloud application
manager 9 retrieves the user’s credentials for the specified
application (STEP 660).

A new headless-browser session is started, with an empty
cookie store (STEP 670). The cloud application manager 9
navigates the headless browser 49 to the user’s URL (STEP
671); and the headless browser notifies the server 11 when
the page is fully loaded (STEP 673). The cloud application
manager 9 injects the user’s credentials into the applica-
tion’s login form and submits the login form (STEP 675).
The web application responds with cookies which represent
the user’s current session (STEP 677). The headless browser
49 notifies the cloud application manager 9 that the user is
logged in, with a specific destination URL (STEP 679). The
cloud application manager 9 requests the user’s application
cookies (STEP 681); and the headless browser 49 responds
with the requested cookies (STEP 683). The browser session
is then destroyed (STEP 685) to ensure that the cookies
cannot be retrieved by another user.

The cloud application manager 9 serialises the cookies
into a data format which can be sent to the extension 7 and
sends them, along with the destination URL (STEP 687).
The extension 7 stores the cookies in the cookie store of the
browser 3 (STEP 689). The browser responds with a success
message (STEP 691). The extension 7 notifies the browser
to navigate to the destination URL (STEP 693). The user is
presented with the application in a logged-in state (STEP
695).

Audit Trail

The system 1 can be configured to capture relevant
information from within a restricted web page and send the
captured information to the cloud application manager 9 on
the remote server 11 as part of an audit event, for example
to supplement details such as the URL of the web page. The
information can, for example, be captured in response to one
or more of the following events: DOM Load; DOM Change;
Page Load; Page Change; and a custom trigger. This capa-
bility enriches the audit trail to support analysis of user
interaction with web sites or forensics investigations.

The information can be captured from one or more
predefined DOM elements from the web application’s page
DOM, loaded on the browser 7, including both background
DOM elements (for example a DIV or SPAN element), or
input DOM elements which can receive input by the user
(for example a text input for a file name or email address).
The captured information can, for example, comprise one or
more of the following: file name(s); email addresses;
exported data; report generating parameters. For example, in
the case of a user action being the attachment of a file to a
web mail message, relevant information includes the name
of the file and the email addresses of the recipients of the
email message. In the case of a user exporting data from a
web application, relevant information may include a copy of
the data exported and/or the name of the report run to initiate
the export.

US 9,460,292 B2

17

Traditional web monitoring systems that reside on the
network, typically at the Internet gateway, are unable to
capture all user interaction with Single Page Interface appli-
cations. Within a Single Page Interface application all nec-
essary code (HTML, JavaScript, and CSS) is retrieved with
a single page load. Updates to the page (as the user interacts
with it) may or may not involve further interaction with a
server. If there is no interaction with a server, a traditional
monitoring system will not capture user activity within the
application.

At least in certain embodiments, the system 1 enables an
audit trail to be generated, even for interaction with Single
Page Interface applications. The extension 7 is configured to
listen for one or more DOM events and to store related data
when each said DOM event is detected. The DOM events
can be pre-defined, for example by a system administrator.
The DOM events can be associated with a user action (for
example the DOM event can include identifying when an
on-screen button is clicked by the user); and/or can be
related to activity within the browser 3 (for example, the
DOM event can be triggered when a web page has been
loaded or is modified). When a DOM event is detected, it is
added to specific, configurable elements within the page’s
HTML DOM. A list of DOM events is provided in the W3C
specification for HTML DOM events (see http://
www.w3.org/TR/DOM-Level-3-Events/). ~ When these
DOM events are subsequently triggered by the user, for
example by events such as a mouse click or a keyboard
input, the extension queries the page’s HTML DOM for data
contained within other configurable elements. The data
contained within these elements are held in either memory
or persistent storage on the device and subsequently seri-
alised and sent to the server 11 for auditing.

The operation of the audit trail techniques will now be
described with reference to a seventh flowchart 700 shown
in FIG. 9.

A user navigates to a page in the browser 3 and the page
is loaded (STEP 710). The browser 3 injects the extension 7
resources into a page-specific sandbox (STEP 711). The
extension 7 registers specific, configurable DOM and
JavaScript event listeners with the browser’s DOM and
JavaScript engine (STEP 713). These listener configurations
are specified on a per-security group level and are subse-
quently applied to a user based upon their security group
membership. The application’s page is displayed to the user
(STEP 715).

Optionally, a user’s interaction with the page, or a back-
ground AJAX event, may trigger a modification to the DOM
(STEP 720). The DOM is modified (STEP 721); and the
extension 7 is notified of a DOM modification event (STEP
723). The extension 7 applies and registers any additional
DOM and JavaScript event listeners, based upon the latest
DOM (STEP 725).

A User Event, or background AJAX call, triggers one of
the registered event listeners. The extension 7 is notified of
the event by the browser 3; and the extension 7 queries the
current DOM data, based upon the audit event configuration.
The relevant DOM data is returned to the extension 7.
Optionally, the extension 7 can take a screenshot of the
current user’s device viewport. An audit message is con-
structed and serialised (STEP 730). The audit message is
sent to the server 11 (STEP 740); and the server 11 acknowl-
edges receipt of the audit message (STEP 750).

Multiple Credentials

A single user can have multiple credentials or accounts
associated with their identity on the cloud application man-
ager 9 for a particular web site or web application. This

10

20

25

30

40

45

50

55

18

reflects the fact that individuals have multiple accounts on
specific web sites, for example for personal and professional
use. The credentials are stored on the remote server 11.

On accessing the login page of a web site for which
multiple credentials are stored, the user is presented with a
drop down list of accounts. The user can select the account
to be used to access the web site for that session.

The implementation of multiple user credentials will now
be described with reference to an eighth flowchart 800
shown in FIG. 10.

The user navigates to a managed web application (STEP
810); and the browser notifies the extension 7 of the page
load (STEP 820). The extension 7 interrogates the DOM to
detect the application’s login form fields (STEP 830). If
login fields are detected, related information is returned to
the extension 7 (STEP 840). The extension 7 checks the
current user’s configuration to determine whether there are
multiple credentials available for the current web application
(STEP 850).

The credential UUIDs (Universally Unique Identification)
for the current application are sent to the remote server 11,
to retrieve the usernames for the credential references held
in the extension 7 configuration (STEP 860). A serialised
map of UUID to encrypted usernames is returned from the
remote server 11 (STEP 870). The usernames are decrypted
by the extension 7 (STEP 880); and the available usernames
are rendered into the application page’s DOM (STEP 890).
The application login page is displayed to the user, with a
dialog box displaying a choice of the available credentials
(STEP 900).

The user confirms the credential they wish to use to login
to the web application (STEP 910). The browser 3 notifies
the extension 7 of the credential UUID chosen by the user
(STEP 920). The extension 7 requests the password for the
specified UUID from the remote server 11 (STEP 930). The
encrypted password for the given credential is returned to
the extension 7 (STEP 940); and the password is decrypted
(STEP 950).

The username and password are returned to the extension
resources which are running within the context of the
application DOM (STEP 960). The username and password
are injected into the login form fields (STEP 970). The login
form is submitted and the user logged into the web appli-
cation (STEP 980); and the user presented with the web
application in a logged-in state (STEP 990).

Content Filtering

The extension 7 can be configured to inhibit or prevent
access to certain web page content. The extension 7 can
identify content within a web page and apply one or more
rules to modify an element of the web page or prevent the
page from being rendered on the computer completely and
optionally replace it with a pre-defined page stating that
content has been blocked.

The extension 7 can compare the content of a web page
to a look-up table stored in a database of undesirable,
inappropriate or offensive keywords and phrases. The look-
up table can be defined for a particular user or group of
users. Either specific elements of a web page containing
content that exists in the look-up table can be blocked or
obfuscated; or the entire page can be prevented from being
rendered. The look-up table could optionally also include
URLSs of web pages known to contain inappropriate content
could be included within the look-up table.

The implementation of the content filtering techniques
will now be described with reference to a ninth flowchart
1000 shown in FIG. 11.

US 9,460,292 B2

19

When the browser opens, the extension 7 is initialised
(STEP 1010). The extension 7 registers event listeners for
browser web request and response events (STEP 1020). A
user requests a specific web application page (STEP 1030).
It should be noted that this may be a single-page interface
and no communication is required with the end-user web
application to move to the “page”, which is simply a newly
rendered view on a different URL. The browser notifies the
extension 7 that a web application URL change event has
occurred (STEP 1040). The extension 7 validates the
requested URL/data request against a white- and/or black-
list (STEP 1050). The white/black list is a user-configurable
set of data (typically configured by a system administrator)
which can be referenced to determine whether a user request
is allowed or denied. For example, a white list can consist of
a list of allowed URLs; and a black list can consist of a list
of blocked or disallowed URLs. The extension 7 notifies the
browser 3 to cancel the requested event (STEP 1060). The
extension 7 notifies the browser 3 to display a blocked
notification (STEP 1070); and the user receives a page
blocked notification (STEP 1080).

Preventing Downloads

The extension 7 can prevent execution of any code within
a web page to protect the computer from malicious programs
embedded within a web page. When URLs belonging to a
managed web-application are accessed, the HTTP response
headers “Content-type” and “Content-Disposition” are
inspected. If the content type is restricted for the configured
application, the response is cancelled and the user is notified
that the content is blocked. The configuration is based upon
an application configuration defined for a particular user
group, which is subsequently applied to users allocated to
that group.

The implementation of the download prevention tech-
niques will now be described with reference to a tenth
flowchart 1100 shown in FIG. 12.

The extension 7 is initialised when the browser 3 opens
(STEP 1110). The extension 7 registers event listeners for
browser web request and response events (STEP 1120). A
user requests a downloadable resource from the web appli-
cation (STEP 1130). The browser 3 initiates the request with
the end-user web application (STEP 1140). The browser 3
starts receiving the resource, along with the associated
HTTP response headers (STEP 1150). The browser 3 notifies
the extension 7 that a resource is being downloaded (STEP
1160). The extension 7 inspects the HTTP response headers
associated with the resource (STEP 1170); and validates the
resource request against the user-specific white- and/or
black-list, utilising the “Content-Type” and “Content-Dis-
position” HTTP response headers, along with other response
header data delivered with the response (STEP 1180). The
extension 7 notifies the browser 3 to cancel the resource
download (STEP 1190); and to display a resource download
blocked notification (STEP 1200). The User receives a
notification to advise that the resource download has been
blocked (STEP 1210).

Support for Browser Extensions on iOS Devices

In a still further aspect, the invention includes a method
of supporting the extension 7 for Safari on an Apple i0OS
device, as illustrated in the system schematic shown in
FIGS. 13 and 14. The extension 7 is supported on the i0OS
device via an installable application (“app”) 50 (for example
downloaded from the iTunes store) configured to access a
resource file store 53. The application 50 comprises a web
browser (a web view 51 is illustrated in FIG. 13); a Safari
extension management and parsing module (not shown); and
a Safari extension emulator 55. The web browser component

20

30

40

45

20

provides functionality similar to existing browsers, and in
addition renders certain extension features outside of the
browser window to provide a more native iOS experience.
In particular, the extension toolbar menu and menu items are
rendered as 10S tables with selectable rows; and certain web
pages (e.g. login, managed cloud applications, extension
settings) specified by the extension 7 are displayed as modal
views with animated transitions.

The Safari extension management and parsing module
implements the eXtensible ARchiver (XAR) with digital
signature specification (see, for example, http://code.google.
cony/p/xar/wiki/xarformat), The Safari extension manage-
ment and parsing module can read a Safari extension file
packaged for a normal Safari desktop browser. The man-
agement and parsing module checks for and downloads
version updates, validates the digital signature of the exten-
sion file and parses its contents with checksum validation.
The digital signature validation is restricted to only allow
certificate chains that start with certificates defined by the
application and end with the Apple Root CA certificate. It
maintains a cache of the extension file to decrease start-up
time when new extension versions are not available.

The Safari extension emulator 55 comprises a Safari
extension API JavaScript (JS) facade that runs in web pages
and objective-c extension invocation handling code. The
extension emulator 55 runs in a single extension global web
page in the background (B) and also in each browser web
page that is visible in the foreground (F) on a device display.

The extension emulator 55 comprises an HTTP intercep-
tor 57, a web application communications handler 59 and an
HTML injector 61. The web application communications
handler 59 comprises an extensions communications han-
dler 63 (for example, to pass messages between the back-
ground (B) and the foreground (F); and fire page state
change events); and an iOS communications handler 65 (for
example to take screenshots; and open/close pages). The
functional parts of the emulator 55 and their interactions will
now be described with reference to FIG. 13.

1. The browser generates an HT'TP page request.

2. The HTTP interceptor 57 intercepts the HTTP page
request and passes it to the internet (denoted by the
reference numeral 67).

3. The HTML injector 61 injects into a HEAD element of
the HTTP page response a link to the non-JS extension
resources; and a link to a pre-built emulation IS
resource that combines the extension JS resources and
the extension API JS facade into an anonymous IS
namespace (so as to not interfere with, and to not be
accessible by, any other JS used by the web page).

4. The extension emulator 55 intercepts HI'TP requests
for the non-JS extension resources and directs them to
the extension resource files (in the resource file store
53) loaded by the Safari extension management and
parsing module.

5. The extension emulator 55 intercepts the HTTP request
for the pre-built emulation IS resource and directs it to
the corresponding data.

6. The extension JS API facade maintains local resources
(within the page) necessary for emulation and commu-
nicates with the objective-c extension invocation han-
dling code via JSON-RPC over HTTP requests.

7. The extension emulator 55 intercepts the JSON-RPC
over HTTP requests and directs them to the objective-c
extension invocation handling code.

8. The objective-c extension invocation handling code
performs the necessary actions (e.g. passes a message

US 9,460,292 B2

21

to the extension global web page JS via a direct IS
method invocation on the extension JS API facade).

The sequence of events to achieve emulation for the
background extension global web page is similar to the
above. However, the JS extension resources and the exten-
sion JS API facade are not combined into an anonymous JS
namespace, but are injected as separate links to resources.
Furthermore, the objective-c extension invocation handling
code performs actions relevant to the background extension
global web page (e.g. passes a message to the foreground
extension JS code; opens a new browser page; captures a
screenshot). Also, the messages are passed to the foreground
extension JS code via a JSON-RPC over HTTP response,
handled by a listener created by the extension JS API facade.
This approach helps to ensure that messages cannot be
intercepted by any other JS used by the web page.

In addition to these sequences, user interactions relevant
to the extension emulator 55 (for example, opening/navi-
gating/closing web pages; selecting extension toolbar menu
items) result in events being raised in the extension JS API
facade by communication between the objective-c code and
extension JS API facade.

The application 50 implements the Safari extension
secure storage API in a sandboxed and encrypted data store
to provide a persistent data set which is maintained between
terminations and re-starting of the application 50. The
sandboxing and encryption ensure that this data is only
accessible from the application 50. In addition, a flag set on
the i0S device secure storage keychain ensures that the data
is only accessible by the application 50 when it is in the
device foreground.

The application 50 exposes management of the browser
cookies to the background extension global web page JS, so
that web sessions can be terminated and to support server-
side authentication (as described herein).

In the present embodiment, the domain used by the
extension JS API facade to request extension resources and
to send JSON-RPC over HTTP requests is a long string of
random characters and numbers, which is re-generated each
time the application 50 is started. This ensures that JS code
used by the web page is unable to access extension resources
or communicate with the application 50 (the number of
combinations is so high that the JS code wouldn’t have
enough time during the active life of the app to discover the
domain string). Furthermore, most of the functionality
exposed to the extension JS API facade from the objective-c
extension invocation handling code is limited to invocation
only from the background extension global web page, and
therefore inaccessible from the foreground web pages.

The application 50 comprises a Web Application Com-
munication Handler 69 which enables communication
between the JavaScript extension and the objective-c exten-
sion. In particular, the Web Application Communication
Handler 69 comprises a message routing module 71 for
managing communication between a JavaScript extension
code module 73 and an objective-c extension code module
75 (operating on iOS).

JavaScript/objective-c Message Routing

The Web Application Communication Handler 69 enables
communication between the extension code modules 73, 75
via JavaScript/objective-c message routing. The message
routing implements bi-directional method invocation and
synchronous/asynchronous method responses between
JavaScript running within a UlWebView and objective-c
within the application 50. The technique comprises:

10

15

20

25

30

35

40

45

50

55

60

65

22

use of a JavaScript XMLHttpRequest object to make
synchronous/asynchronous method invocations from
the JavaScript extension code module 73;

use of the JavaScript XMLHttpRequest object to register
foreground extension JavaScript method invocation
listeners;

use of the objective-c UlWebView “string ByEvaluating-

JavaScriptFromString” method to directly invoke back-
ground extension JavaScript methods; and

use of the HTTP Interceptor to direct requests from the

XMLHttpRequest object to the Web Application Com-
munications Handler and to return responses.

In the event that a response comprises data, it is sent by
an XMLHttpRequest. The message routing module 71 is
able to establish a connection between this XML HttpRe-
quest and the response message required by the second
message.

Communication Pseudo Code

Before communication can be performed, the JavaScript
extension code module 73 and the objective-c extension
code module 75 need to register their namespace with the
Web Application Communication Handler 69 via the fol-
lowing (pseudo) code:

registerNamespace:“namespace

OSCommsHandler)”

This returns a unique namespace ID to be used in subse-

quent invocations.
JavaScript methods and objective-c code blocks for handling
messages are then registered with the Web App Comms
Handler via the following (pseudo) code:
registerMessageHandler:handler name: “name of the
message”
namespacelD:“namespacelD”
sourceWhiteList[“namespaceA”,“namespaceB”|
(JavaScript only)

useDirectJSInvocation:true/false

The “sourceWhiteList” parameter enables a message han-
dler to only accept messages from a list of source
namespaces. This is important for providing specific func-
tionality to particular parts of the extension emulation; for
example so that the iOS Communications Handler 69 will
only respond to messages that have been sent from the
background extension JavaScript.

The “useDirectJSInvocation” parameter is for JavaScript
to indicate whether or not it can receive messages with direct
JavaScript invocation. Direct JavaScript invocation is only
possible if the JavaScript is not within an anonymous
namespace; in the case of the foreground extension
JavaScript, which is within an anonymous namespace, the
value is always false.

Messages can then be sent for synchronous responses via
the following (pseudo) code:

responseData=sendSynchronousMessage:“name of mes-

sage”data:data namespace: “namespace of message
recipient(s)”
or asynchronously via the following (pseudo) code:
sendAsynchronousMessage:“name of message” data:
data namespace: “namespace of recipient(s)” callback:
callback
Message Namespaces

The use of namespaces allows a message to be sent to
multiple recipients, e.g.:

to all recipients: namespace:

to extension JavaScript in every foreground web page:

namespace:“com.saasid.webpage.foreground.”

(e.g. corn.saasid.i-

axgeor

US 9,460,292 B2

23

Response Data Format

The synchronous response data and response data sent to
the asynchronous callback has the following (pseudo) for-
mat:

[source: “namespaceA” data:dataA,

“namespaceB” data: dataB], . . .
The data can carry multiple responses if the message was
sent to multiple recipients.
Web Application Communication Handler

This component handles the JavaScript/objective-c mes-
sage routing.

Extension Communication Handler

This component encompasses the communication
between the extension JavaScript on the background and
foreground web pages. It also handles communication with
the extension JavaScript originating from the applications
objective-c; for example to inform of page events.

108 Communication Handler

This component handles communication with the appli-
cation’s objective-c originating from the extension
JavaScript; for example to capture screens shots or to open
and close pages.

A sequence diagram 1300 shown in FIG. 15 depicts how
the extension JavaScript in the extension global page (run-
ning in the background) sends initialisation data to the
extension JavaScript in a web page (running in the fore-
ground). Within the sequence diagram 1300 the heavily
shaded objects are not proprietary to the Applicant and are
available on any i10OS device. The dashed lines within the
sequence diagram 1300 represent responses.

The data used in the illustrated sequence is specific for
sending initialisation data within the browser extension 7. It
will be appreciated that other browser extension messages
can follow this sequence, for example: “changel.oginSta-
tus”, “changeServerAvailabilityStatus”, “retrieveCreden-
tials”. This sequence would be used on iOS devices by any
browser extension that needs to send data from the
JavaScript in the extension global page to the extension
JavaScript in a web page.

The foreground extension JavaScript is within an anony-
mous namespace, and so it is only accessible from the
application objective-c once it registers itself with the Web
Application Communication Handler, as illustrated in the
foreground (F) illustrated in FIG. 15 (these steps are shown
in the bottom half of the sequence diagram, starting with
“waitForMessages” and terminating at the JavaScript/objec-
tive-c Message Routing object within the objective-c).

The data in the sequence diagram 1300 comprises:

dataA—the data to be sent with the initialisation message
(to be used in an invocation of “setFrameAndTabld” on the
foreground extension JavaScript), including:

tabld,

frameld.

dataB—a combination of dataA and additional data
required by the objective-c message routing, including:

a unique message identifier;

the message routing name (“sendAsynchronousMes-
sage”);

the background namespace identifier, to identify from
where the message has originated;

a flag to indicate that no response is expected because the
“send AsynchronousMessage™ message was used with
an undefined callback;

a time-stamp for auditing purposes.

source:

10

15

20

25

30

35

40

45

50

55

60

65

24

dataC—data required by the objective-c message routing
to register a message listener:

a unique message identifier;

the message routing name (“waitForMessages™);

the foreground namespace identifier, to identify from

where the message has originated;

a time-stamp for auditing and also to help check for stale,

long running connections.

In the background extension (B), an initialise message is
sent from the background JavaScript extension to a Safari
extension JavaScript API facade 77 (STEP 1310). An asyn-
chronous “initialise” message is sent to the JavaScript/
objective-c message routing module 71 with the dataA
(STEP 1320). The dataB is thereafter sent to an
XMLHttpRequest module 79 (asynchronous
onreadystatechange=null) (STEP 1330); and an HTTP Post
sent to an i0S Foundation Framework 81 (STEP 1340). A
startl.oading instruction is sent to the HTTP interceptor
module 57 (STEP 1350). An asynchronous message “ini-
tialise” is sent with the dataA to the message routing module
71. The dataB can also include data used in step 1320, for
example: the original message name from STEP 1310 (in
this example, “initialise”); dataA; and the destination
namespace identifier.

In the foreground extension (F), a waitForMessage is sent
from the Safari extension JavaScript API fagade 77 to the
JavaScript/objective-c message routing module 71 (STEP
1370). The dataC is sent to the XMLHttpRequest module 79
(asynchronous onreadystatechange=callback) (STEP 1380).
An HTTP Post is sent to an iOS Foundation Framework 81
in the objective-c (STEP 1390). A startl.oading instruction is
sent to the HTTP interceptor module 57 (STEP 1400). A
waitForMessage is sent to the message routing module 71
(STEP 1410).

A message ‘initialise’ and the dataA are returned in a
response from the message routing module 71 (STEP 1420).
A response object and the response dataB are returned to the
i0S Foundation Framework 81 (STEP 1430); and an HTTP
response is returned to the XMLHttpRequest module 79
(STEP 1440). A callback and the dataB is sent to the
message routing module 71 (STEP 1450); and the message
‘initialise’ and the dataA sent to the Safari extension
JavaScript API fagcade 77 (STEP 1460). A setFrameAndTa-
bld message together with the dataA is sent to the extension
JavaScript 73 (STEP 1470).

The response object returned from the HTTPlnterceptor
has to be specially created so that it is accepted by the
XMLHttpRequest object; in particular, it must have the
“Access-Control-Allow-Origin” HTTP header set to “*”.

Although the present embodiment is described and illus-
trated herein as being implemented in an internet or network
based system, the system described is provided as an
example and not a limitation. As those skilled in the art will
appreciate, the present examples are suitable for application
in a variety of different types of computing systems and
networks.

The term ‘computer’ is used herein to refer to any device
with processing capability such that it can execute instruc-
tions. Those skilled in the art will realize that such process-
ing capabilities are incorporated into many different devices
and therefore the term ‘computer’ includes servers, mobile
telephones, personal digital assistants and many other
devices.

The methods described herein may be performed by
software in machine readable form on a storage medium.

US 9,460,292 B2

25

The software can be suitable for execution on a parallel
processor or a serial processor such that the method steps
may be carried out in any suitable order, or simultaneously.

It is intended to encompass software, which runs on or
controls “dumb” or standard hardware, to carry out the
desired functions. It is also intended to encompass software
which “describes” or defines the configuration of hardware,
such as HDL (hardware description language) software, as is
used for designing silicon chips, or for configuring universal
programmable chips, to carry out desired functions.

Those skilled in the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to operate the
program. Alternatively, the local computer may download
pieces of the software as needed, or execute some software
instructions at the local terminal and some at the remote
computer (or computer network). Those skilled in the art
will also realize that by utilizing conventional techniques
known to those skilled in the art that all, or a portion of the
software instructions may be carried out by a dedicated
circuit, such as a DSP, programmable logic array, or the like.

Any range or device value given herein may be extended
or altered without losing the effect sought, as will be
apparent to the skilled person.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. It will further be understood that
reference to ‘an’ item refer to one or more of those items.

The steps of the methods described herein may be carried
out in any suitable order, or simultaneously where appro-
priate.

It will be understood that the above description of a
preferred embodiment is given by way of example only and
that various modifications may be made by those skilled in
the art. The above specification, examples and data provide
a complete description of the structure and use of exemplary
embodiments of the invention. Although various embodi-
ments of the invention have been described above with a
certain degree of particularity or with reference to one or
more individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiment
without departing from the spirit or scope of this invention.

The invention claimed is:

1. A computer comprising:

a processor configured to execute instructions;

the instructions, when executed by the processor, direct

the computer to perform operations within a browser
operating in conjunction with an extension to render a
customized version of a document object model, the
operations comprising:

receiving a web page;

parsing the web page into a source document object

model,;

identifying a renderable restricted element in the source

document object model;

accessing at least one rule associated with the renderable

restricted element;
generating a modified document object model separate
from the source document object model by applying
said at least one rule to the renderable restricted ele-
ment to alter the renderable restricted element and thus
generate a modified document object model; and

rendering, by the browser, said modified document object
model,;

10

20

25

30

35

40

45

55

60

65

26

wherein the source document object model is loaded and
the generating and rendering are performed without
rendering the source document object model.

2. A computer as claimed in claim 1, wherein the opera-
tions further comprise identifying the user; the at least one
rule and/or a list of restricted elements being defined for that
user.

3. A computer as claimed in claim 1, wherein the at least
one rule is fetched from a database based on a unique
identifier.

4. A computer as claimed in claim 1, wherein the source
document object model defines a part of a web page; and the
generating and rendering are performed for one or more
source document object models in the web page.

5. A computer as claimed in claim 1, wherein the docu-
ment object model defines a web page.

6. A computer as claimed in claim 1, wherein the gener-
ating and rendering are repeated for a plurality of document
object models to generate a plurality of modified document
object models which are rendered substantially simultane-
ously.

7. A computer as claimed in claim 1, wherein said at least
one rule provides one or more of the following functions:

hide a portion or all of said renderable restricted element

from view;

remove a portion or all of said renderable restricted

element from the source document object model;
disable functionality associated with said renderable
restricted element;

obfuscate a portion or all of said renderable restricted

element;

unwrap a link embedded within said renderable restricted

element; and

register a screenshot of said modified document object

model in its rendered form.

8. A computer as claimed in claim 1, wherein said
operations further comprise operating a browser through
which the restricted web site is accessed; and said at least
one rule disables at least one of the following functions of
said browser:

printing functionality;

save functionality;

viewing of the document object model source; and

copy functions.

9. A computer as claimed in claim 8, wherein each
function of the browser which has not been disabled by said
at least one rule is positively enabled.

10. A computer as claimed in claim 1, the operations
further comprising determining whether said at least one
rule has been applied to said renderable restricted element
and issuing a notification.

11. A computer as claimed in claim 1, the operations
further comprising the step of identifying the user and
looking up access rights for that user; and/or identifying
contextual information and looking up context-based restric-
tions.

12. A method of rendering a customized version of a
restricted document object model, the method comprising:

within a browser operating in conjunction with an exten-

sion:

receiving a web page;

parsing the web page into a source document object

model,;

identifying a renderable restricted element in the source

document object model;

accessing at least one rule associated with the renderable

restricted element;

US 9,460,292 B2

27

generating a modified document object model separate
from the source document object model by applying
said at least one rule to the renderable restricted ele-
ment to alter the renderable restricted element and thus
generate a modified document object model; and

rendering, by the browser, said modified document object
model,;

wherein the source document object model is loaded and

the generating and rendering are performed without
rendering the source document object model.

13. A non-transitory machine-readable storage medium
having machine-executable instructions encoded thereon
that upon execution by a processor direct a computer to
perform the method of claim 12.

#* #* #* #* #*

10

15

28

